Haar Invariant Sets and Compact Transformation Groups
نویسندگان
چکیده
منابع مشابه
Haar Measure for Compact Right Topological Groups
Compact right topological groups arise in topological dynamics and in other settings. Following H. Furstenberg's seminal work on distal flows, R. Ellis and I. Namioka have shown that the compact right topological groups of dynamical type always admit a probability measure invariant under the continuous left translations; however, this invariance property is insufficient to identify a unique pro...
متن کاملConditional Haar Measures on Classical Compact Groups
We give a probabilistic proof of the Weyl integration formula on U(n), the unitary group with dimension n. This relies on a suitable definition of Haar measures conditioned to the existence of a stable subspace with any given dimension p. The developed method leads to the following result: for this conditional measure, writing Z (p) U for the first nonzero derivative of the characteristic polyn...
متن کاملAmenability, Free Subgroups, and Haar Null Sets in Non-locally Compact Groups
The paper has two objectives. On the one hand, we study left Haar null sets—a measure theoretic notion of smallness on Polish, not necessarily locally compact, groups. On the other hand, we introduce and investigate two classes of Polish groups which are closely related to this notion and to amenability. We show that left Haar null sets form a σ-ideal and have the Steinhaus property on Polish g...
متن کاملThe Entries of Haar-invariant Matrices from the Classical Compact Groups
Let Γn = (γij)n×n be a random matrix with the Haar probability measure on the orthogonal group O(n), the unitary group U(n) or the symplectic group Sp(n). Given 1 ≤ m < n, a probability inequality for a distance between (γij)n×m and some mn independent F -valued normal random variables is obtained, where F = R, C or H (the set of real quaternions). The result is universal for the three cases. I...
متن کاملShift Invariant Spaces and Shift Preserving Operators on Locally Compact Abelian Groups
We investigate shift invariant subspaces of $L^2(G)$, where $G$ is a locally compact abelian group. We show that every shift invariant space can be decomposed as an orthogonal sum of spaces each of which is generated by a single function whose shifts form a Parseval frame. For a second countable locally compact abelian group $G$ we prove a useful Hilbert space isomorphism, introduce range funct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1996
ISSN: 0022-247X
DOI: 10.1006/jmaa.1996.0012